基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
开发了基于图形处理器(GPU)的Cholesky分解并行算法,应用于模态计算程序中,对计算进行加速.算例测试表明该算法相对串行算法计算性能大幅提升,且加速比随矩阵阶数增加而增加,与串行程序相比加速比可达到19.6,此时GPU浮点运算能力达到298Gflops.GPU程序固有频率计算结果与Abaqus计算结果的误差在2%以内,具有足够的计算精度.
推荐文章
基于GPU加速求解MINLP问题的SQP并行算法
混合整数非线性规划
GPU
序贯二次规划法
加速
基于CUDA的汇流分析并行算法的研究与实现
并行计算
图形处理器
统一设备计算架构
汇流分析
数字高程模型
基于GPU的并行优化技术
图形处理器
并行优化
累加和
统一计算设备架构
基于GPU的SVM参数优化并行算法
图形处理单元
支持向量机
网格搜索算法
粒子群优化算法
参数优化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于GPU的模态分析并行算法
来源期刊 华中科技大学学报:自然科学版 学科 工学
关键词 子空间迭代 图形处理器 模态 并行计算 有限元
年,卷(期) 2012,(5) 所属期刊栏目 船舶与海洋工程
研究方向 页码范围 33-36
页数 分类号 TG241|O327
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (3)
参考文献  (6)
节点文献
引证文献  (2)
同被引文献  (3)
二级引证文献  (3)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(2)
  • 参考文献(0)
  • 二级参考文献(2)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
子空间迭代
图形处理器
模态
并行计算
有限元
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华中科技大学学报(自然科学版)
月刊
1671-4512
42-1658/N
大16开
武汉市珞喻路1037号
38-9
1973
chi
出版文献量(篇)
9146
总下载数(次)
26
总被引数(次)
88536
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导