基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在文本分类中,应用支持向量机(SVM)算法能使分类在小样本的条件下具有良好的泛化能力,但支持向量机的参数取值决定了其学习性能和泛化能力.为提高支持向量机算法的性能,提出了一种支持向量机优化算法E-SM,引入信息熵来表征惩罚系数C,提出了加权系数ψ,算法实现了SVM训练过程中参数的智能化,减少了对支持向量机参数选择的盲目性,减少了部分训练样本集数目,提高了SVM性能.实验表明,E-SVM算法较传统算法具有更好的分类精度和时间效率.
推荐文章
一种改进的SVM支持向量分类方法
支持向量机
类向心度
样本集
KNN
一种改进的支持向量机BS-SVM
支持向量机
训练样本
样本分类
边界样本
一种改进的模糊多类支持向量机算法
支持向量机
统计学习理论
多类分类
模糊隶属函数
一种改进的支持向量机及其应用
支持向量机
模糊支持向量机
模糊隶属度
车型识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种改进的支持向量机E-SVM算法
来源期刊 河北工业大学学报 学科 工学
关键词 支持向量机 信息熵 加权系数 噪声数据
年,卷(期) 2012,(6) 所属期刊栏目
研究方向 页码范围 10-15
页数 6页 分类号 TP301|TP391
字数 3638字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王志中 解放军重庆通信学院信息工程系 2 23 2.0 2.0
2 周城 2 23 2.0 2.0
3 李兵兵 空军工程大学防空反导学院 3 25 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (23)
参考文献  (4)
节点文献
引证文献  (3)
同被引文献  (5)
二级引证文献  (0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(5)
  • 参考文献(2)
  • 二级参考文献(3)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
支持向量机
信息熵
加权系数
噪声数据
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河北工业大学学报
双月刊
1007-2373
13-1208/T
大16开
天津市北辰区双口镇西平道5340号
1917
chi
出版文献量(篇)
3202
总下载数(次)
10
总被引数(次)
21785
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导