基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
月度负荷预测是电力系统计划、调度、营销部门的重要工作之一,本文根据影响月度负荷的因素,运用Matlab工具箱,建立基于RBF神经网络的月度负荷预测模型,利用它对某地区2009年的月度负荷进行预测,预测结果为相对误差1.96%,因此,据预测结果可知本文提出的模型预测精度较高,完全可以达到工程实际应用的目标。
推荐文章
基于BP神经网络的电力系统短期负荷预测
负荷预测
神经网络
遗传算法
基于GA-BP神经网络的电力系统负荷预测研究
电力系统
负荷预测
BP神经网络
遗传算法
GA-BP
人工神经网络在电力系统短期负荷预测中的应用
多层神经网络
BP模型
负荷预测
基于BP神经网络的电力系统负荷预报
BP神经网络
非线性
预报
电力系统负荷
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于RBF神经网络的电力系统月度负荷预测研究
来源期刊 电气技术 学科 工学
关键词 RBF神经网络 电力系统 月度负荷预测
年,卷(期) 2012,(2) 所属期刊栏目 研究与开发
研究方向 页码范围 36-38
页数 3页 分类号 TM712
字数 2912字 语种 中文
DOI 10.3969/j.issn.1673-3800.2012.02.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 岳丽霖 4 19 3.0 4.0
2 连美霞 4 12 2.0 3.0
3 张丽芳 2 5 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (6)
参考文献  (3)
节点文献
引证文献  (5)
同被引文献  (13)
二级引证文献  (7)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
RBF神经网络
电力系统
月度负荷预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电气技术
月刊
1673-3800
11-5255/TM
大16开
北京市西城区莲花池东路102号天莲大厦10层
2000
chi
出版文献量(篇)
6373
总下载数(次)
15
总被引数(次)
19291
论文1v1指导