基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高基于高斯过程回归的软测量模型的预测精度,提出了一种混合高斯过程回归模型。该模型将高斯过程回归模型预测输出值的方差及其分布作为主要考虑因素,对多个高斯过程回归模型的输出值进行组合输出,获得了比单个高斯过程回归模型更高的预测精度和更强的模型鲁棒性。将该模型实用于高炉铁水硅含量预报模型的建模,获得了比使用单个高斯过程回归模型建模时更好的应用效果。
推荐文章
高炉铁水硅含量序列的支持向量机预测模型
自回归AR(p)模型
主成分分析
支持向量机
炉温预测
模拟退火免疫算法及其在铁水含硅量预报中的应用
模拟退火
免疫算法
优化
神经网络
硅含量预报
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 混合高斯过程回归模型在铁水硅含量预报中的应用
来源期刊 重庆大学学报:自然科学版 学科 工学
关键词 高斯过程回归 Bootstrap 软传感器 参数估计 统计方法
年,卷(期) 2012,(2) 所属期刊栏目
研究方向 页码范围 123-127
页数 分类号 TP212.6
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 曹长修 重庆大学自动化学院 162 2835 26.0 47.0
2 任江洪 重庆大学自动化学院 10 56 5.0 7.0
3 陈韬 南洋理工大学化学与生物医学工程学院 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (14)
参考文献  (8)
节点文献
引证文献  (6)
同被引文献  (24)
二级引证文献  (22)
1978(2)
  • 参考文献(1)
  • 二级参考文献(1)
1979(1)
  • 参考文献(1)
  • 二级参考文献(0)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(5)
  • 引证文献(0)
  • 二级引证文献(5)
2016(8)
  • 引证文献(0)
  • 二级引证文献(8)
2017(4)
  • 引证文献(2)
  • 二级引证文献(2)
2018(4)
  • 引证文献(3)
  • 二级引证文献(1)
2019(6)
  • 引证文献(0)
  • 二级引证文献(6)
研究主题发展历程
节点文献
高斯过程回归
Bootstrap
软传感器
参数估计
统计方法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆大学学报
月刊
1000-582X
50-1044/N
大16开
重庆市沙坪坝正街174号
78-16
1960
chi
出版文献量(篇)
6349
总下载数(次)
8
论文1v1指导