基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
文章提出了一种基于投影梯度法的非负矩阵分解稀疏算法,该算法通过引入基于投影梯度的迭代方法,来解决加向量1-范数约束以及加向量2-范数约束的非负矩阵分解问题,得到了局部最优解.通过实验表明该算法在分解时间以及基矩阵的稀疏度表达能力上优于NMF算法和SNMF算法.
推荐文章
基于稀疏性非负矩阵分解的故障监测方法
故障监测
非负矩阵分解
主元分析
稀疏编码
统计过程监控
基于稀疏非负TT分解的图像分类算法
Tensor Train分解
交替非负最小二乘法
非负张量分解
稀疏性
用于独立特征学习的稀疏非负矩阵分解算法
非负矩阵分解
L2,1/2稀疏
独立特征学习
余弦相似性
基于KL散度的增量非负矩阵分解盲源分离算法
增量非负矩阵分解
散度
盲源分离
乘性更新
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于投影梯度法的非负矩阵分解稀疏算法
来源期刊 计算机与数字工程 学科 工学
关键词 非负矩阵分解 投影梯度法 稀疏算法
年,卷(期) 2012,(12) 所属期刊栏目 算法与分析
研究方向 页码范围 20-22,59
页数 4页 分类号 TP391.41
字数 3771字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 平沙沙 西安交通大学数学与统计学院 2 9 2.0 2.0
2 褚蕾蕾 西安交通大学数学与统计学院 7 20 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (28)
共引文献  (86)
参考文献  (6)
节点文献
引证文献  (7)
同被引文献  (10)
二级引证文献  (26)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(4)
  • 参考文献(1)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(2)
  • 引证文献(1)
  • 二级引证文献(1)
2015(4)
  • 引证文献(1)
  • 二级引证文献(3)
2016(5)
  • 引证文献(1)
  • 二级引证文献(4)
2017(5)
  • 引证文献(0)
  • 二级引证文献(5)
2018(8)
  • 引证文献(3)
  • 二级引证文献(5)
2019(6)
  • 引证文献(0)
  • 二级引证文献(6)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
非负矩阵分解
投影梯度法
稀疏算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
总被引数(次)
47579
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导