作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
研究算法改进,提高计算性能,贝叶斯网络是解决不确定性问题的一种有效方法,在很多领域得到了广泛应用.参数学习是贝叶斯网络构建的重要环节,但含隐变量、连续变量的参数学习是非常困难的.为解决上述问题,提出了一种人工鱼群算法的贝叶斯网络参数学习方法,并进一步通过调整人工鱼随机移动速度的方法提高了算法的收敛性能和速度.最后,将参数学习方法在由Noisy-Or和Noisy-And节点组成的贝叶斯网络中进行了仿真,仿真结果表明了参数学习方法,特别是改进后方法的可行性和优越性.
推荐文章
基于MapReduce的贝叶斯网络参数学习方法
大数据
贝叶斯网络
参数学习
期望最大化算法
MapReduce
基于参数学习贝叶斯网络的对敌空中目标融合识别
参数学习
目标识别
贝叶斯网络
数据融合
基于因果效应的贝叶斯网络结构学习方法
贝叶斯网络
阿尔茨海默病
K2算法
因果效应
BDe评分
互信息
基于贝叶斯网络的海量数据多维分类学习方法研究
多维分类
贝叶斯网络
机器学习
海量数据
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于人工鱼群算法的贝叶斯网络参数学习方法
来源期刊 计算机仿真 学科 工学
关键词 贝叶斯网络 人工鱼群算法 参数学习
年,卷(期) 2012,(1) 所属期刊栏目 优化仿真
研究方向 页码范围 184-187
页数 分类号 TP301.6
字数 3181字 语种 中文
DOI 10.3969/j.issn.1006-9348.2012.01.046
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王艳 华北电力大学计算机系 64 480 10.0 21.0
2 郭军 华北电力大学计算机系 4 19 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (720)
参考文献  (6)
节点文献
引证文献  (9)
同被引文献  (8)
二级引证文献  (4)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(4)
  • 引证文献(1)
  • 二级引证文献(3)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
贝叶斯网络
人工鱼群算法
参数学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机仿真
月刊
1006-9348
11-3724/TP
大16开
北京海淀阜成路14号
82-773
1984
chi
出版文献量(篇)
20896
总下载数(次)
43
论文1v1指导