基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于超完备字典的图像稀疏表示因其具有稀疏性、特征保持性、可分性等特点而被广泛应用于图像处理.本文利用K-SVD字典学习算法并应用于MR图像重建.将字典学习等价于一个二次规划问题,学习得到的字典能有效描述图像特征.基于学习所得的字典,获得图像的稀疏表示,并重建原始图像.实验结果表明,与Zero-filling方法相比,本文的重建结果能更好地保留图像细节信息,获得更高的SNR值.
推荐文章
基于稀疏 K-SVD 字典的图像融合方法
稀疏K-SVD
解析字典
学习字典
图像融合
基于改进的K-SVD字典学习CT图像重建算法
图像重建
SART算法
K-SVD字典学习
稀疏角度
基于K-SVD超声渡越时间获取方法研究
稀疏表示
完备字典
超声检测
正交匹配追踪
K-SVD
基于分块K-SVD字典学习的彩色图像去噪
字典学习
图像分割
彩色图像去噪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于K-SVD字典学习的核磁共振图像重建方法
来源期刊 中国传媒大学学报(自然科学版) 学科 工学
关键词 压缩感知 核磁共振成像 重构算法 K-SVD字典学习方法
年,卷(期) 2013,(4) 所属期刊栏目
研究方向 页码范围 34-39
页数 6页 分类号 TP391
字数 4289字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 朱永贵 中国传媒大学理学院 102 41 3.0 5.0
2 刘平 中国传媒大学理学院 3 24 3.0 3.0
3 刘晓曼 中国传媒大学理学院 9 14 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (4)
节点文献
引证文献  (7)
同被引文献  (30)
二级引证文献  (14)
2006(3)
  • 参考文献(3)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(4)
  • 引证文献(3)
  • 二级引证文献(1)
2017(5)
  • 引证文献(0)
  • 二级引证文献(5)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(5)
  • 引证文献(1)
  • 二级引证文献(4)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
压缩感知
核磁共振成像
重构算法
K-SVD字典学习方法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国传媒大学学报(自然科学版)
双月刊
1673-4793
11-5379/N
16开
北京市朝阳区定福庄东街1号(中国传媒大学30号信箱)
1994
chi
出版文献量(篇)
1230
总下载数(次)
8
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导