基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对加速度传感器的手势采集方式提出一种基于自学习稀疏表示的动态手势识别方法。该方法将分类识别问题转化为求解待识别样本对于训练样本的稀疏表示问题,直接对原始加速度信号进行操作,省去了特征提取过程,可方便地添加新的手势类别和删除已有的手势类别;利用面向类别的字典学习,来寻求一个较小的并经过优化的超完备字典来计算待识别样本的稀疏表示,从而大大缩减算法的计算复杂度,满足实时性要求。在包含18种手势的3000多个样本的公开数据集上进行测试,实验结果验证了该方法的有效性。
推荐文章
基于深度图像和稀疏表示的多手势识别算法
深度图像
稀疏表示
多目标手势
手势分割
手势识别
基于无监督特征学习的手势识别方法
无监督的特征学习
稀疏自编码神经网络
边缘特征
调优
基于RGB-D信息的动态手势识别方法
动态手势识别
彩色—深度图像
K-均值聚类算法
动态时间规整
快速动态时间规整
卡尔曼滤波
基于增强字典稀疏表示分类的SAR目标识别方法
合成孔径雷达
目标识别
增强字典
稀疏表示分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于自学习稀疏表示的动态手势识别方法
来源期刊 通信学报 学科 工学
关键词 手势识别 稀疏表示 字典学习 加速度传感器
年,卷(期) 2013,(6) 所属期刊栏目
研究方向 页码范围 128-135
页数 8页 分类号 TP391
字数 7233字 语种 中文
DOI 10.3969/j.issn.1000-436x.2013.06.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李仁发 湖南大学嵌入式与网络计算湖南省重点实验室 468 4582 30.0 44.0
2 屈卫兰 湖南大学信息科学与工程学院 5 45 3.0 5.0
3 肖玲 湖南大学嵌入式与网络计算湖南省重点实验室 11 235 7.0 11.0
7 曾凡仔 湖南大学信息科学与工程学院 29 216 8.0 14.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (30)
参考文献  (9)
节点文献
引证文献  (24)
同被引文献  (45)
二级引证文献  (28)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(5)
  • 参考文献(2)
  • 二级参考文献(3)
2010(5)
  • 参考文献(2)
  • 二级参考文献(3)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(4)
  • 引证文献(4)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(5)
  • 引证文献(5)
  • 二级引证文献(0)
2017(11)
  • 引证文献(6)
  • 二级引证文献(5)
2018(9)
  • 引证文献(5)
  • 二级引证文献(4)
2019(15)
  • 引证文献(2)
  • 二级引证文献(13)
2020(6)
  • 引证文献(0)
  • 二级引证文献(6)
研究主题发展历程
节点文献
手势识别
稀疏表示
字典学习
加速度传感器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
通信学报
月刊
1000-436X
11-2102/TN
大16开
北京市丰台区成寿路11号邮电出版大厦8层
2-676
1980
chi
出版文献量(篇)
6235
总下载数(次)
17
总被引数(次)
85479
论文1v1指导