基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于标准的支持向量机算法需要解一个二次规划问题,当训练样本较多时,其运算速度一般很慢,为了提高运算速度,根据不同的准则,提出了基于核函数的3种支持向量回归模型.基于使残差的平方和为最小准测的模型转化为解线性方程组运算,只需要矩阵乘积与求逆运算;基于使残差的最大绝对值为最小准则和使残差的绝对值之和为最小准则的2个模型转化为线性规划问题,并给出了线性规划的对偶问题.实验结果表明了该方法的有效性,且计算量明显降低.通过实例,对高斯径向基核函数和多项式基核函数进行了比较与分析,高斯径向基核函数的精度比多项式基核函数高.对高斯径向基核函数和多项式基核函数的不同参数也进行了比较和分析.
推荐文章
基于改进支持向量机回归的非线性飞机结构载荷模型建模
飞机结构载荷
支持向量机回归
SMO算法
粒子群优化算法
基于MapReduce的最小二乘支持向量机回归模型
最小二乘支持向量机
MapReduce编程模式
局部多模型方法
加速比
可扩展性
基于支持向量机回归的电力负荷预测研究
结构风险最小化
支持向量机
支持向量回归
电力负荷预测
神经网络
基于V-支持向量机与ε-支持向量机的非线性系统辨识
支持向量机
非线性系统
辨识
回归问题
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 不同准则下的线性支持向量机回归模型
来源期刊 东南大学学报(自然科学版) 学科 工学
关键词 支持向量机 回归 线性规划 核函数
年,卷(期) 2013,(z1) 所属期刊栏目
研究方向 页码范围 44-47
页数 4页 分类号 TP181
字数 2242字 语种 中文
DOI 10.3969/j.issn.1001-0505.2013.S1.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 高尚 江苏科技大学计算机科学与工程学院 159 1624 18.0 34.0
2 于化龙 江苏科技大学计算机科学与工程学院 44 135 8.0 10.0
3 刘夫成 江苏科技大学计算机科学与工程学院 2 7 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (25)
参考文献  (5)
节点文献
引证文献  (5)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(4)
  • 参考文献(1)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
支持向量机
回归
线性规划
核函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
东南大学学报(自然科学版)
双月刊
1001-0505
32-1178/N
大16开
南京四牌楼2号
28-15
1955
chi
出版文献量(篇)
5216
总下载数(次)
12
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导