基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
多标记学习中通常存在大量未标记示例,本研究结合协同训练(Co-training)方法充分利用数据集中的未标记示例,在数据集上选取局部k-NN(k nearest neighbor)和全局k-NN进行训练得到两个分类器,分类器分别标记未标记示例并相互更新训练集.协同训练过程不断迭代进行,直至训练完成.试验结果表明,该方法性能均优于其他多标记学习算法.
推荐文章
一种半监督的多标签Boosting分类算法
Boosting算法
半监督学习
多标签分类
一种基于半监督学习的应用层流量分类方法
流量分类
半监督学习
特征选择
一种基于半监督主动学习的动态贝叶斯网络算法
动态贝叶斯网络
半监督主动学习
主动学习
最小相对熵
投票熵
基于一种多分类半监督学习算法的驾驶风格分类模型
驾驶风格
主成分分析
K-means聚类
支持向量机
多分类半监督学习算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种新的基于半监督的多标记学习算法
来源期刊 山东大学学报(工学版) 学科 工学
关键词 半监督学习 多标记学习 局部k-NN 全局k-NN
年,卷(期) 2013,(2) 所属期刊栏目 机器学习与数据挖掘
研究方向 页码范围 18-22
页数 分类号 TP301
字数 语种 中文
DOI 10.6040/j.issn.1672-3961.3.2012.051
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张化祥 山东师范大学信息科学与工程学院 73 576 14.0 19.0
5 李雅林 山东师范大学信息科学与工程学院 2 4 2.0 2.0
9 冯新营 山东师范大学信息科学与工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (1)
参考文献  (8)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
半监督学习
多标记学习
局部k-NN
全局k-NN
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山东大学学报(工学版)
双月刊
1672-3961
37-1391/T
大16开
济南市经十路17923号
24-221
1956
chi
出版文献量(篇)
3095
总下载数(次)
14
总被引数(次)
24236
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导