基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对旋转机械复杂声场中强噪声干扰及故障源未知等难题,提出一种基于盲解卷积的声学诊断方法.该方法采用包络谱余弦测度作为独立分量间距离测度,结合冲击信号峭度指标优选独立分量,进而通过频域稀疏分量分析对估计信号做进一步的分离,最终实现在欠定条件下对滚动轴承复合故障信号的可靠提取.实际声场环境中的滚动轴承复合故障声信号提取试验验证了该方法的有效性.
推荐文章
最小熵解卷积在滚动轴承早期故障诊断中的应用
故障诊断
滚动轴承
最小熵解卷积
包络谱
基于卷积神经网络的滚动轴承故障诊断方法
深度学习
卷积神经网络
特征自动提取
轴承故障诊断
基于包络谱稀疏度和最大相关峭度解卷积的滚动轴承早期故障诊断方法
滚动轴承
稀疏度
最大相关峭度解卷积
故障诊断
基于MWT和CNN的滚动轴承智能复合故障诊断方法
滚动轴承
智能复合故障诊断
多小波变换
卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 欠定盲解卷积用于滚动轴承复合故障声学诊断
来源期刊 振动、测试与诊断 学科 工学
关键词 欠定盲解卷积 频域稀疏分量分析 复合故障 声学诊断
年,卷(期) 2013,(2) 所属期刊栏目 论文
研究方向 页码范围 284-289
页数 6页 分类号 TP165.3|TP206.3|TH133.33
字数 4834字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 迟毅林 昆明理工大学机电工程学院 83 690 15.0 22.0
2 刘畅 昆明理工大学机电工程学院 47 171 7.0 11.0
3 伍星 昆明理工大学机电工程学院 109 394 10.0 14.0
4 柳小勤 昆明理工大学机电工程学院 24 57 5.0 6.0
5 潘楠 昆明理工大学机电工程学院 27 40 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (22)
参考文献  (7)
节点文献
引证文献  (8)
同被引文献  (25)
二级引证文献  (11)
1991(3)
  • 参考文献(0)
  • 二级参考文献(3)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(6)
  • 引证文献(3)
  • 二级引证文献(3)
2016(4)
  • 引证文献(3)
  • 二级引证文献(1)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(3)
  • 引证文献(1)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
欠定盲解卷积
频域稀疏分量分析
复合故障
声学诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
振动、测试与诊断
双月刊
1004-6801
32-1361/V
南京市御道街29号
chi
出版文献量(篇)
2937
总下载数(次)
3
总被引数(次)
26426
论文1v1指导