作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
根据不同的小波分解及重构技术及不同的模糊神经网络模型训练周期,本文提出了四种小波分析与模糊神经网络相结合的径流预报模型,即:基于Mallat算法的母周期径流预报模型、基于Mal-lat算法的子周期径流预报模型、基于小波包算法的母周期径流预报模型、基于小波包算法的子周期径流预报模型,并阐述了模型建立的原理、结构及步骤.而且,以黄河源区出口水文站——唐乃亥站月径流量为应用实例,采用周期分解系数及模拟效率系数对上述四种模型进行对比评价.结果表明:基于Mallat算法的母周期径流预报模型预报效果最好,基于小波包算法的子周期径流预报模型则模拟效果最差.文中对导致这一现象的主要原因进行了分析,并对小波分析及模糊神经网络在水文模型中的应用提出了合理化建议.
推荐文章
基于PSO的模糊人工神经网络径流预报模型
粒子群优化
模糊神经网络
径流预测
基于小波分析与BP神经网络的西湖叶绿素a浓度预测模型
小波分析
BP神经网络
Chl-a
短期预测
杭州西湖
基于模糊聚类神经网络的化工过程预报模型研究
神经网络
模糊聚类
预报模型
化工过程
基于小波分析与神经网络的交通流短时预测方法
小波分析
小波神经元网络
交通流
短时预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波分析—模糊神经网络的径流预报模型
来源期刊 水利水电技术 学科 地球科学
关键词 小波分析 WANFIS 周期分解系数 径流预报模型
年,卷(期) 2013,(2) 所属期刊栏目 水文水资源
研究方向 页码范围 5-8
页数 4页 分类号 P338
字数 3337字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杜富慧 河北工程大学水电学院 14 23 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (76)
参考文献  (6)
节点文献
引证文献  (5)
同被引文献  (13)
二级引证文献  (4)
1970(1)
  • 参考文献(1)
  • 二级参考文献(0)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(6)
  • 参考文献(1)
  • 二级参考文献(5)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(4)
  • 引证文献(3)
  • 二级引证文献(1)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
小波分析
WANFIS
周期分解系数
径流预报模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
水利水电技术
月刊
1000-0860
11-1757/TV
大16开
北京市海淀区玉渊潭南路3号
2-426
1959
chi
出版文献量(篇)
7729
总下载数(次)
10
总被引数(次)
49620
论文1v1指导