基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
利用灰色理论中累加生成方法能够削弱负荷中随机成分的特点,以及人工神经网络可以逼近任意函数的能力,对具有任意变化规律的数据序列进行拟合和预测.实验结果表明,基于灰色理论和神经网络的最优组合模型的平均相对误差为1.307%,比BP神经网络预测和灰色理论模型预测的精度更高,具有明显优势.
推荐文章
基于LSTM时间递归神经网络的短期电力负荷预测
短期电力负荷预测
LSTM
时间递归
神经网络
基于 BP 神经网络系统的短期电力负荷预测
电力负荷预测
神经网络
BP 算法
MATLAB
误差分析
基于BP神经网络的电力系统短期负荷预测
负荷预测
神经网络
遗传算法
基于TensorFlow的LSTM循环神经网络短期电力负荷预测
Tensor Flow
LSTM
深度学习
短期电力负荷预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于灰色理论和神经网络的短期电力负荷预测
来源期刊 上海电力学院学报 学科 工学
关键词 BP神经网络 灰色理论 负荷预测
年,卷(期) 2013,(6) 所属期刊栏目 智能电网
研究方向 页码范围 527-531
页数 5页 分类号 TM715|TP183
字数 2339字 语种 中文
DOI 10.3969/j.issn.1006-4729.2013.06.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王勇 上海电力学院电力与自动化工程学院 67 322 10.0 14.0
2 杨恒 上海电力学院电力与自动化工程学院 8 42 4.0 6.0
3 陈帅 上海电力学院电力与自动化工程学院 8 42 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (28)
共引文献  (25)
参考文献  (3)
节点文献
引证文献  (5)
同被引文献  (15)
二级引证文献  (8)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(4)
  • 引证文献(0)
  • 二级引证文献(4)
2019(6)
  • 引证文献(2)
  • 二级引证文献(4)
研究主题发展历程
节点文献
BP神经网络
灰色理论
负荷预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
上海电力大学学报
双月刊
2096-8299
31-2175/TM
大16开
上海市平凉路2103号
1980
chi
出版文献量(篇)
2781
总下载数(次)
10
论文1v1指导