基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在很多实际问题中,很容易得到大量未标记数据而较难获取数据的标记;所以半监督学习在过去的10多年中得到了很大的关注.基于不一致性的半监督学习是其中一种十分重要的风范,协同训练是其代表方法.至今为止,大部分协同训练方法在选择未标记示例进行标记时只考虑预测学习器的置信度,而忽视了学习器的需求.受到真实教学系统的启发,提出了一种针对协同训练的教学模型TaLe,其中预测学习器是“教”者,而另一方则为“学”者.进而基于该模型给出了一种新的协同训练方法CoSnT,同时考虑了“教”的置信度和“学”的需求度.实验结果表明CoSnT在收敛效率和泛化性能上都优于标准的协同训练算法.
推荐文章
基于联邦学习的短期负荷预测模型协同训练方法
数据隐私
机器学习
负荷预测
联邦学习
一种新的RBF神经网络训练方法
强跟踪滤波器
RBF神经网络
网络学习
系统辨识
一种捆绑子空间分布隐马尔可夫模型的训练方法
语音识别
隐马尔可夫模型
高斯分布
基于组合训练方法的RBFNN转炉炼钢静态模型
径向基神经网络
转炉炼钢
梯度下降法
量子微粒群优化算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于教学模型的协同训练方法
来源期刊 计算机研究与发展 学科 工学
关键词 半监督学习 基于不一致性 协同训练 TaLe模型 CoSnT “教”置信度 “学”需求度
年,卷(期) 2013,(11) 所属期刊栏目 机器学习与数据挖掘
研究方向 页码范围 2262-2268
页数 7页 分类号 TP181
字数 3852字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (14)
参考文献  (5)
节点文献
引证文献  (3)
同被引文献  (3)
二级引证文献  (1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
半监督学习
基于不一致性
协同训练
TaLe模型
CoSnT
“教”置信度
“学”需求度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机研究与发展
月刊
1000-1239
11-1777/TP
大16开
北京中关村科学院南路6号
2-654
1958
chi
出版文献量(篇)
7553
总下载数(次)
35
总被引数(次)
164870
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导