现有的标注聚类算法大多采用传统的K-means或Single-linkage算法对标注数据直接聚类,但是K-means或Single-linkage本身固有的缺陷严重影响了聚类结果的质量.给出了一种局部中心度传播聚类算法LCIPC(local centrality information passing clustering),该算法首先在标注相似度的基础上建立标注数据的KNN有向邻居图G;然后利用核密度估计方法计算每个标注的局部中心度;再通过随机游走方法在图G中传播局部中心度,以产生全局中心度等级;最后,调用图深度优先搜索算法发现标注聚类结果.在3个真实数据集上的聚类结果显示,LCIPC算法具有够获得高质量标注聚类结果的能力.