作者:
原文服务方: 微电子学与计算机       
摘要:
研究基于关联度挖掘的海量网络文本挖掘方法;随着计算机和网络技术的快速发展,网络上的文本呈现海量增长的趋势,传统的网络文本挖掘方法采用基于特征提取的方法实现,能够实现小数据量下的文本挖掘,但是在信息量的快速增长下,传统方法已经不能适应;提出一种基于关联度挖掘的海量网络文本挖掘方法,首先采用特征提取的方法对海量文本进行初步的分类和特征识别,然后采用关联度挖掘的方法对各个文本特征之间的关联度进行计算处理,根据关联度的大小最终实现文本挖掘,由于关联度可以很好的体现特征文本之间的相互关系;最后采用一组随机的网络热门词汇进行测试实验,结果显示,算法能够很好适应海量文本下的挖掘实现,具有很好的应用价值。
推荐文章
不确定噪声下海量文本数据的模糊挖掘算法研究
不确定噪声
海量文本数据
模糊数据挖掘算法
特征系数
关联规则
基于模糊关联规则的海量数据挖掘方法研究
模糊关联规则
海量数
数据挖掘
大数据环境下的文本信息挖掘方法
大数据
文本信息
信息挖掘
查准率
深入挖掘小学英语新教材文本与图片内容
挖掘
小学英语
文本与图片
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 关联挖掘下的海量文本信息深入挖掘实现
来源期刊 微电子学与计算机 学科
关键词 关联度挖掘 海量文本 特征提取
年,卷(期) 2013,(10) 所属期刊栏目
研究方向 页码范围 157-160,164
页数 5页 分类号 TP37
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 彭其华 四川理工学院计算机学院 9 30 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (16)
共引文献  (182)
参考文献  (7)
节点文献
引证文献  (4)
同被引文献  (6)
二级引证文献  (2)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
关联度挖掘
海量文本
特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
总被引数(次)
59060
论文1v1指导