基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
谱聚类算法是建立在谱图理论上的一种点对聚类算法,具有实现简单、理论基础扎实和适应任意数据空间的优点,因而成为机器学习领域的研究热点.谱聚类算法最大的问题在于计算复杂度过高,而并行计算可以提高解题效率,因此本文采用最为流行的并行计算框架MAP/REDUCE在Hadoop环境中实现了并行谱聚类算法,大大改善了谱聚类算法在大规模数据环境中的聚类效率问题.
推荐文章
基于LPCA的谱聚类算法
局部主成分分析
谱聚类
连通图分解
交叉点
PPI网络的改进谱聚类算法
谱聚类算法
粒子群优化算法
蛋白质相互作用网络
基于Spark并行的密度峰值聚类算法
聚类
密度峰值
空间划分
并行
Spark
图像分割的谱聚类集成算法
谱聚类
集成学习
Hungarian算法
成分数据
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 并行谱聚类算法
来源期刊 网络安全技术与应用 学科 工学
关键词 谱聚类 相似性矩阵 并行
年,卷(期) 2013,(11) 所属期刊栏目 技术·应用
研究方向 页码范围 51-54,68
页数 5页 分类号 TP311.13
字数 6925字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘媛 北京理工大学计算机学院 7 39 3.0 6.0
2 杜杏虎 北京理工大学计算机学院 2 4 1.0 2.0
3 白剑 北京理工大学计算机学院 1 3 1.0 1.0
4 张国顺 北京理工大学计算机学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (4)
节点文献
引证文献  (3)
同被引文献  (0)
二级引证文献  (0)
1973(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
谱聚类
相似性矩阵
并行
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
网络安全技术与应用
月刊
1009-6833
11-4522/TP
大16开
北京市
2-741
2001
chi
出版文献量(篇)
13340
总下载数(次)
61
总被引数(次)
33730
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导