基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
将粗分类应用于脱机手写汉字识别中,采用这种多层次分类策略,能有效地改善识别的性能,提高识别精度.本文提出了一种利用四角区域结构特征对手写汉字进行粗分类的方法.在对汉字基本笔画进行分析的基础之上,根据手写汉字形变的特点以及识别算法的要求,定义一组新的笔画单元,并将这些笔画单元与汉字特定区域内的结构进行比对,得到一组4位结构特征编码,以此作为脱机手写汉字粗分类的依据.对GB2312一级字库中的部分手写汉字进行采样和识别实验,结果证明改进的四角结构特征用于粗分类的有效性.
推荐文章
基于改进inception的脱机手写汉字识别
脱机手写汉字
卷积神经网络
inception
一种用于脱机手写体女书字符切分的方法
交叉
粘连
连通域
曲线切分
一种基于参照模型的联机手写汉字识别方法
模式识别
参照模型
笔划提取
A*算法
基于深度残差网络的脱机手写汉字识别研究
手写汉字识别
深度学习
深度残差网络
End-to-End
卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种改进的脱机手写汉字四角特征粗分类方法
来源期刊 信息安全与技术 学科
关键词 手写汉字识别 粗分类 结构特征
年,卷(期) 2013,(4) 所属期刊栏目 典型应用
研究方向 页码范围 81-85
页数 5页 分类号
字数 2584字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王伊瑾 河北农业大学信息科学与技术学院 8 23 3.0 4.0
2 张欣 4 2 1.0 1.0
3 李亚男 河北农业大学信息科学与技术学院 9 42 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (8)
参考文献  (5)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(6)
  • 参考文献(0)
  • 二级参考文献(6)
1998(5)
  • 参考文献(1)
  • 二级参考文献(4)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
手写汉字识别
粗分类
结构特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
网络空间安全
月刊
1674-9456
10-1421/TP
16开
北京市海淀区紫竹院路66号赛迪大厦18层
82-938
2010
chi
出版文献量(篇)
3296
总下载数(次)
16
论文1v1指导