原文服务方: 计算机应用研究       
摘要:
研究基于inceptions结构神经网络的脱机手写汉字识别,提出了一种inception结构的改进方法,它具有结构更加简单、网络深度扩展更加容易、需要的训练参数量更少的优点.该方法在数据集CISIA-HWDB1.1上进行了实验验证,采用随机梯度下降优化算法,模型达到了96.95%的平均准确率.实验结果表明,使用改进的in-ception结构在图像分类上具有更好的鲁棒性,更容易扩展到其他应用领域.
推荐文章
基于深度残差网络的脱机手写汉字识别研究
手写汉字识别
深度学习
深度残差网络
End-to-End
卷积神经网络
基于参照模型的联机手写汉字笔划提取及识别
模式识别
参照模型
笔划提取
A*算法
基于ANN和HMM的联机手写体汉字识别系统
联机手写体汉字识别
ANN
HMM
一种基于参照模型的联机手写汉字识别方法
模式识别
参照模型
笔划提取
A*算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进inception的脱机手写汉字识别
来源期刊 计算机应用研究 学科
关键词 脱机手写汉字 卷积神经网络 inception
年,卷(期) 2020,(4) 所属期刊栏目 图形图像技术
研究方向 页码范围 1244-1246,1251
页数 4页 分类号 TP391.41
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2018.09.0784
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邱卫根 广东工业大学计算机学院 46 160 7.0 10.0
2 张立臣 广东工业大学计算机学院 158 820 14.0 21.0
3 陈站 广东工业大学计算机学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (106)
共引文献  (79)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(3)
  • 参考文献(1)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(6)
  • 参考文献(0)
  • 二级参考文献(6)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(8)
  • 参考文献(0)
  • 二级参考文献(8)
2005(8)
  • 参考文献(0)
  • 二级参考文献(8)
2006(11)
  • 参考文献(0)
  • 二级参考文献(11)
2007(15)
  • 参考文献(0)
  • 二级参考文献(15)
2008(9)
  • 参考文献(0)
  • 二级参考文献(9)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(7)
  • 参考文献(0)
  • 二级参考文献(7)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
脱机手写汉字
卷积神经网络
inception
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导