基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
K调和均值算法(KHM)用数据点与所有聚类中心的距离的调和平均值替代了数据点与聚类中心的最小距离,是一种对初始值不敏感、收敛速度快的有效聚类算法,但它容易陷入局部最小值。而遗传算法具有良好的全局优化能力。文中结合了KHM和遗传算法各自的优点,采用KHM计算每一代种群的聚类中心,并构造适应度函数,通过遗传算法进行一系列择优操作,成功地解决了KHM容易陷入局部最小值的问题。实验结果表明,所提出的算法不仅优化了聚类中心,而且还改善了聚类质量。
推荐文章
基于改进遗传算法的模糊C均值聚类算法
聚类
FCM算法
遗传算法
种群熵
基于改进引力搜索的混合K-调和均值聚类算法研究
混合K-调和均值聚类
KHM算法
改进引力搜索算法
全局搜索能力
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于遗传算法的K调和均值聚类算法
来源期刊 计算机技术与发展 学科 工学
关键词 遗传算法 K调和均值 聚类
年,卷(期) 2013,(9) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 55-58
页数 4页 分类号 TP301.6
字数 3151字 语种 中文
DOI 10.3969/j.issn.1673-629X.2013.09.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 覃华 广西大学计算机与电子信息学院 52 334 11.0 15.0
2 苏一丹 广西大学计算机与电子信息学院 114 849 16.0 23.0
3 吴丹 广西大学计算机与电子信息学院 8 24 3.0 4.0
4 李家成 广西大学计算机与电子信息学院 1 12 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (38)
共引文献  (87)
参考文献  (10)
节点文献
引证文献  (12)
同被引文献  (53)
二级引证文献  (23)
1994(2)
  • 参考文献(1)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(8)
  • 参考文献(1)
  • 二级参考文献(7)
2010(7)
  • 参考文献(2)
  • 二级参考文献(5)
2011(4)
  • 参考文献(4)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(4)
  • 引证文献(4)
  • 二级引证文献(0)
2015(3)
  • 引证文献(2)
  • 二级引证文献(1)
2016(5)
  • 引证文献(2)
  • 二级引证文献(3)
2017(6)
  • 引证文献(1)
  • 二级引证文献(5)
2018(11)
  • 引证文献(3)
  • 二级引证文献(8)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
遗传算法
K调和均值
聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导