基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统灰色风速预测模型累加处理时不能预测突变风速,使风电功率预测误差过大.采用数值逼近算法对传统灰色GM(1,1)预测模型进行优化改进,以优化的灰色GM(1,1)预测模型对未来时段风速进行预测,突变风速预测误差降低了34.3%.再将优化风速预测模型和时间序列动态神经网络相结合,构建出风电功率预测模型.应用该模型对酒泉地区某风电场现场数据进行仿真测试,预测效果可信度大于93%.
推荐文章
基于风速融合和NARX神经网络的短期风电功率预测
短期风电功率预测
预测模型
NARX神经网络
风速融合
数据融合
数据处理
基于CS-SVR模型的短期风电功率预测
功率预测
布谷鸟搜索算法
支持向量回归机
参数寻优
异常数据剔除
基于风速数值预报的两种风电功率预测方法
风功率预测
神经网络
误差动态修订
释用方法
基于ARMA的风电功率预测
风力发电
ARMA
风电功率预测
风电机组
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 短期风速-风电功率预测方法
来源期刊 电源技术 学科 工学
关键词 灰色优化模型 短期风速预测 时间序列动态神经网络 风电功率预测
年,卷(期) 2013,(4) 所属期刊栏目 研究与设计
研究方向 页码范围 614-616,638
页数 4页 分类号 TM73
字数 2876字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张友鹏 兰州交通大学自动化与电气工程学院 151 1113 16.0 25.0
2 高锋阳 兰州交通大学自动化与电气工程学院 70 222 7.0 12.0
3 董唯光 兰州交通大学自动化与电气工程学院 28 110 5.0 8.0
4 叶爱贤 兰州交通大学自动化与电气工程学院 2 13 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (377)
参考文献  (8)
节点文献
引证文献  (5)
同被引文献  (7)
二级引证文献  (4)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(2)
  • 引证文献(1)
  • 二级引证文献(1)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
灰色优化模型
短期风速预测
时间序列动态神经网络
风电功率预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电源技术
月刊
1002-087X
12-1126/TM
大16开
天津296信箱44分箱
6-28
1977
chi
出版文献量(篇)
9323
总下载数(次)
56
总被引数(次)
55810
论文1v1指导