作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
模型选择以及如何进行组合是物流需求组合预测的关键,为了提高物流需求的预测精度,提出一种包容性检验和主成分分析相融合的物流需求预测模型(ET-PCA)。采用多个单一模型对物流需求进行预测,采用包容性检验选择最合理的单一模型,利用PCA对选择的单一模型预测结果进行组合,采用仿真实验对组合模型性能进行测试。结果表明,相对于传统组合模型,ET-PCA较好地解决了物流需求单一预测模型选择及组合问题,更加全面、准确描述了物流需求复杂的变化趋势,提高了物流需求的预测精度和效率,具有一定应用价值。
推荐文章
基于改进的包容性检验的云计算资源组合预测
云计算
包容性检验
主成分分析
组合预测模型
SVM的物流需求预测模型
物流管理
随机性变化特点
ARIMA?SVM
权值的确定
预测模型
支持向量机
包容性检验和SVM相融合的网络流量预测
网络流量
包容性检验
支持向量机
组合预测
区域物流需求预测的应用研究
区域物流需求
线性回归模型
支持向量机
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 包容性检验和PCA相融合的物流需求预测
来源期刊 计算机工程与应用 学科 工学
关键词 物流需求 主成分分析 包容性检验 组合模型
年,卷(期) 2013,(15) 所属期刊栏目
研究方向 页码范围 263-266,270
页数 5页 分类号 TB24
字数 6249字 语种 中文
DOI 10.3778/j.issn.1002-8331.1303-0314
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 蒋梦莉 西安财经学院管理学院信息与物流管理系 9 35 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (80)
共引文献  (198)
参考文献  (15)
节点文献
引证文献  (6)
同被引文献  (31)
二级引证文献  (13)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(6)
  • 参考文献(0)
  • 二级参考文献(6)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(12)
  • 参考文献(1)
  • 二级参考文献(11)
2005(9)
  • 参考文献(2)
  • 二级参考文献(7)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(10)
  • 参考文献(1)
  • 二级参考文献(9)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(6)
  • 参考文献(2)
  • 二级参考文献(4)
2010(9)
  • 参考文献(4)
  • 二级参考文献(5)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(3)
  • 引证文献(3)
  • 二级引证文献(0)
2016(3)
  • 引证文献(0)
  • 二级引证文献(3)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2018(7)
  • 引证文献(2)
  • 二级引证文献(5)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
物流需求
主成分分析
包容性检验
组合模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导