作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
K-means算法是最常用的聚类算法之一,有很多的优点,但也存在着不足.它不仅对样本的输入顺序敏感,可能产生局部最优解,而且受孤立点的影响很大.文章首先探讨了k-means算法的思想与实现,并进一步研究了算法优缺点.
推荐文章
k-means算法的研究与改进
聚类
划分方法
数据样本
阈值
基于Spark的并行K-means算法研究
Spark
K-means
PSO
迭代计算
K-means聚类算法的研究
数据挖掘
K-means算法
初始聚类中心
聚类分析
改进的K-means算法
K-means算法
数据分布
初始中心点
均衡化函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 k-means算法研究
来源期刊 数字化用户 学科
关键词 聚类分析 聚类算法 K-means算法
年,卷(期) 2013,(11) 所属期刊栏目 综合论坛
研究方向 页码范围 121,123
页数 2页 分类号
字数 2188字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 崔卫东 商丘师范学院计算机与信息技术学院 11 33 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (43)
共引文献  (43)
参考文献  (2)
节点文献
引证文献  (2)
同被引文献  (3)
二级引证文献  (4)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(3)
  • 参考文献(0)
  • 二级参考文献(3)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(3)
  • 参考文献(0)
  • 二级参考文献(3)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(5)
  • 参考文献(0)
  • 二级参考文献(5)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(7)
  • 参考文献(0)
  • 二级参考文献(7)
2001(6)
  • 参考文献(0)
  • 二级参考文献(6)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
聚类分析
聚类算法
K-means算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数字化用户
周刊
1009-0843
51-1567/TN
16开
四川省成都市
1999
chi
出版文献量(篇)
46696
总下载数(次)
249
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导