基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This paper presents a hybrid technique for the compression of ECG signals based on DWT and exploiting the correlation between signal samples. It incorporates Discrete Wavelet Transform (DWT), Differential Pulse Code Modulation (DPCM), and run-length coding techniques for the compression of different parts of the signal;where lossless compression is adopted in clinically relevant parts and lossy compression is used in those parts that are not clinically relevant. The proposed compression algorithm begins by segmenting the ECG signal into its main components (P-waves, QRS-complexes, T-waves, U-waves and the isoelectric waves). The resulting waves are grouped into Region of Interest (RoI) and Non Region of Interest (NonRoI) parts. Consequently, lossless and lossy compression schemes are applied to the RoI and NonRoI parts respectively. Ideally we would like to compress the signal losslessly, but in many applications this is not an option. Thus, given a fixed bit budget, it makes sense to spend more bits to represent those parts of the signal that belong to a specific RoI and, thus, reconstruct them with higher fidelity, while allowing other parts to suffer larger distortion. For this purpose, the correlation between the successive samples of the RoI part is utilized by adopting DPCM approach. However the NonRoI part is compressed using DWT, thresholding and coding techniques. The wavelet transformation is used for concentrating the signal energy into a small number of transform coefficients. Compression is then achieved by selecting a subset of the most relevant coefficients which afterwards are efficiently coded. Illustrative examples are given to demonstrate thresholding based on energy packing efficiency strategy, coding of DWT coefficients and data packetizing. The performance of the proposed algorithm is tested in terms of the compression ratio and the PRD distortion metrics for the compression of 10 seconds of data extracted from records 100 and 117 of MIT-BIH database. The obtained results revealed that the p
推荐文章
基于ECG频带特征的身份识别
ECG
小波包
DTW
识别率
远程心电监护中ECG信号的提取
远程心电监护
人工神经网络
自适应噪声抵消
非线性
应用目标检测网络自动检测ECG信号所含噪声
心电信号
噪声检测
YOLOv3
目标检测网络
ECG与PPG多通道信号采集系统滤波延迟补偿研究
心电信号采集
脉搏信号采集
滤波延迟
多通道信号
延迟补偿
信号同步
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Compression of ECG Signals Based on DWT and Exploiting the Correlation between ECG Signal Samples
来源期刊 通讯、网络与系统学国际期刊(英文) 学科 医学
关键词 ECG Signal SEGMENTATION LOSSLESS and LOSSY Compression Techniques Discrete Wavelet TRANSFORM Energy Packing Efficiency RUN-LENGTH Coding
年,卷(期) 2014,(1) 所属期刊栏目
研究方向 页码范围 53-70
页数 18页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
ECG
Signal
SEGMENTATION
LOSSLESS
and
LOSSY
Compression
Techniques
Discrete
Wavelet
TRANSFORM
Energy
Packing
Efficiency
RUN-LENGTH
Coding
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
通讯、网络与系统学国际期刊(英文)
月刊
1913-3715
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
763
总下载数(次)
1
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导