基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在时间序列预测法的基础上,运用统计聚类分析的方法对历史风速数据进行预处理,综合考虑了气象因素对风速的影响.根据预测日的平均风速、最大和最小风速、风向及温度等特征参数,按照相似性最大的原则,选择合适的风速数据作为预测建模用的训练样本.与未经预处理的数据所建立的模型相比,预测精度得到了显著提高,并验证了采用统计聚类分析来预处理数据的正确性,为更精确地预测风电功率提供了条件.
推荐文章
卡尔曼滤波修正的风电场短期功率预测模型
卡尔曼滤波
神经网络
功率预测
风力发电
基于经验模式分解的风电场短期风速预测模型
风速预测
经验模式分解
时间序列
新投产风电场的短期风速预测模型建立
新投产风电场
短期风速预报
物理模型
统计模型
误差
风电场短期风速的集成学习预测模型
短期风速预测
集成学习
动态权重
隶属度函数
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于统计聚类与时序分析的风电场短期风速预测模型
来源期刊 上海电机学院学报 学科 工学
关键词 风速预测 时间序列分析 统计聚类分析 相似性原则 预测精度
年,卷(期) 2014,(2) 所属期刊栏目 机电工程
研究方向 页码范围 76-82
页数 7页 分类号 TM614
字数 4533字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈国初 上海电机学院电气学院 78 405 11.0 17.0
2 陈勤勤 上海电机学院电气学院 3 11 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (78)
共引文献  (150)
参考文献  (13)
节点文献
引证文献  (3)
同被引文献  (14)
二级引证文献  (7)
1985(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(11)
  • 参考文献(0)
  • 二级参考文献(11)
2008(21)
  • 参考文献(1)
  • 二级参考文献(20)
2009(16)
  • 参考文献(2)
  • 二级参考文献(14)
2010(7)
  • 参考文献(2)
  • 二级参考文献(5)
2011(4)
  • 参考文献(4)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(3)
  • 引证文献(1)
  • 二级引证文献(2)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(3)
  • 引证文献(1)
  • 二级引证文献(2)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
风速预测
时间序列分析
统计聚类分析
相似性原则
预测精度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
上海电机学院学报
双月刊
2095-0020
31-1996/Z
16开
上海市橄榄路1350号
1987
chi
出版文献量(篇)
1800
总下载数(次)
4
论文1v1指导