基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的网络图像标注方法忽视了标签集整体相关性对标注结果的影响,导致标签集整体相关性缺乏和语义冗余。为了解决上述问题,提出了一种基于标签集相关性学习的大规模网络图像在线语义标注方法。给出了标签集对图像相关性和标签集内部相关性的概率估计算法,将上述约束形成一个优化问题,采用贪心搜索策略获取近似最优解,找到能合理地平衡上述因素的标签集,并针对大规模图像集和概念集进行了优化。真实环境下大规模网络图像集上的测试表明,相比于目前的代表性网络图像标注方法,该方法获得的标签集能够更好的描述图像语义,性能提升明显。
推荐文章
基于 Hessian半监督特征选择的网络图像标注
网络图像标注
半监督学习
Hessian 能
特征选择
基于 Hessian半监督特征选择的网络图像标注
网络图像标注
半监督学习
Hessian 能
特征选择
生成对抗网络图像类别标签跨模态识别系统设计
生成对抗网络
图像类别标签
跨模态识别
系统设计
卷积神经网络
训练模型
基于标签相关性的类属属性多标签分类算法
标签相关性
类属属性
多标签学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于标签集相关性学习的大规模网络图像在线标注
来源期刊 自动化学报 学科
关键词 网络图像标注 图像语义标注 标签集相关性 标签相关性学习
年,卷(期) 2014,(8) 所属期刊栏目 论文与报告
研究方向 页码范围 1635-1643
页数 9页 分类号
字数 8553字 语种 中文
DOI 10.3724/SP.J.1004.2014.01635
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 沈旭昆 北京航空航天大学虚拟现实技术与系统国家重点实验室 46 442 10.0 20.0
2 田枫 北京航空航天大学虚拟现实技术与系统国家重点实验室 29 41 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (5)
节点文献
引证文献  (10)
同被引文献  (19)
二级引证文献  (5)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(3)
  • 引证文献(3)
  • 二级引证文献(0)
2017(3)
  • 引证文献(2)
  • 二级引证文献(1)
2018(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(2)
  • 引证文献(1)
  • 二级引证文献(1)
2020(4)
  • 引证文献(2)
  • 二级引证文献(2)
研究主题发展历程
节点文献
网络图像标注
图像语义标注
标签集相关性
标签相关性学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
总被引数(次)
120705
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
国家高技术研究发展计划(863计划)
英文译名:The National High Technology Research and Development Program of China
官方网址:http://www.863.org.cn
项目类型:重点项目
学科类型:信息技术
论文1v1指导