基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在分析传统的轧制力数学模型的不足之后,提出了一种基于人工蜂群算法与反向传播神经网络相结合的铝热连轧轧制力预测方法,使用人工蜂群算法优化反向传播神经网络的初始权值和阈值.以现场采集的精轧机组数据作为训练和测试样本,并与Sims数学模型和反向传播神经网络的预测结果进行比较,实验结果表明所提方法的轧制力预测精度和误差明显优于传统算法.
推荐文章
基于混沌搜索的人工蜂群优化神经网络交通流预测方法
交通流预测
BP神经网络
人工蜂群算法
Tent混沌
分时段
人工蜂群算法研究综述
人工蜂群算法
群智能
多目标优化
约束优化
优化人工蜂群算法的跨域虚拟网络映射算法
人工蜂群
虚拟网络
自治域
服务代理
基于人工蜂群的无线传感器网络能耗均衡算法
无线传感器网络
人工蜂群算法
能量均衡
生命周期
路由策略
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于人工蜂群算法与反向传播神经网络的铝热连轧轧制力预测
来源期刊 计量学报 学科 工学
关键词 计量学 轧制力 神经网络 人工蜂群算法
年,卷(期) 2014,(2) 所属期刊栏目
研究方向 页码范围 157-160
页数 4页 分类号 TB931
字数 2414字 语种 中文
DOI 10.3969/j.issn.1000-1158.2014.02.13
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (35)
参考文献  (9)
节点文献
引证文献  (7)
同被引文献  (30)
二级引证文献  (19)
1943(1)
  • 参考文献(1)
  • 二级参考文献(0)
1954(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(6)
  • 引证文献(2)
  • 二级引证文献(4)
2018(5)
  • 引证文献(0)
  • 二级引证文献(5)
2019(11)
  • 引证文献(2)
  • 二级引证文献(9)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
计量学
轧制力
神经网络
人工蜂群算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计量学报
月刊
1000-1158
11-1864/TB
大16开
北京1413信箱
2-798
1980
chi
出版文献量(篇)
3549
总下载数(次)
8
总被引数(次)
20173
相关基金
国家科技支撑计划
英文译名:
官方网址:http://kjzc.jhgl.org/
项目类型:重大项目
学科类型:能源
论文1v1指导