原文服务方: 微电子学与计算机       
摘要:
针对人工蜂群算法易陷入局部最优和收敛速度慢的不足,提出了一种基于全局信息的人工蜂群聚类算法.基于全局信息的人工蜂群聚类算法通过加入食物源平均丰富度(richness),利用中间聚类效果,更好地更新食物源;并且通过引入全局最优信息,提高跟随蜂的搜索效率,以获取聚类问题的全局最优解.同时在UCI机器学习库的4个标准数据集上进行了大量的实验来评估算法的性能.并将该算法和基本人工蜂群算法、粒子群算法和K-means算法进行比较.实验结果证明提出的基于全局信息的人工蜂群聚类算法具有更好的性能.
推荐文章
基于模糊C-均值的改进人工蜂群聚类算法
人工蜂群算法
模糊C-均值
聚类分析
差分进化
搜索方程
改进的人工蜂群算法
人工蜂群算法
差分进化算法
种群初始化
搜索方程
基于人工蜂群优化的K均值聚类算法
聚类分析
K均值算法
人工蜂群算法
聚类中心
优化
基于曲率信息的人工蜂群点云配准算法
点云
曲率信息
特征点选取
对应点寻找
人工蜂群算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于全局信息的人工蜂群聚类算法
来源期刊 微电子学与计算机 学科
关键词 人工蜂群算法 聚类 群体智能 搜索策略 全局信息
年,卷(期) 2017,(2) 所属期刊栏目
研究方向 页码范围 20-24
页数 5页 分类号 TP3
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 宋威 江南大学物联网工程学院 44 158 8.0 10.0
2 马伟 江南大学物联网工程学院 15 51 4.0 6.0
3 邓玉婷 江南大学物联网工程学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (6)
节点文献
引证文献  (3)
同被引文献  (9)
二级引证文献  (2)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(2)
  • 引证文献(1)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
人工蜂群算法
聚类
群体智能
搜索策略
全局信息
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导