作者:
原文服务方: 计算机应用研究       
摘要:
针对仅使用群智能优化算法及点云空间信息进行点云配准时,优化过程寻找两片点云对应点耗时较长,收敛速度较慢的缺点,提出一种基于曲率信息的人工蜂群点云配准算法.算法根据曲率信息提取特征点,通过改进人工蜂群算法优化目标函数得到可以使两片点云重合的最佳变换矩阵.在种群优化过程中根据曲率信息约束对应点寻找范围,缩小参与计算点云的规模.对比实验表明,与仅采用随机选点方法和使用点云空间坐标信息的配准算法等相比,所提出算法可以在不降低配准精度的同时,有效加快配准收敛速度,显著缩短点云配准所用时间.
推荐文章
基于全局信息的人工蜂群聚类算法
人工蜂群算法
聚类
群体智能
搜索策略
全局信息
一种基于曲率的点云自动配准算法
兵马俑
虚拟复原
Hausdorff
粒子群优化算法
配准
最近点迭代
曲率
改进的人工蜂群算法
人工蜂群算法
差分进化算法
种群初始化
搜索方程
基于法向量和高斯曲率的点云配准算法
迭代最近点算法
法向量
高斯曲率
粗配准
精细配准
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于曲率信息的人工蜂群点云配准算法
来源期刊 计算机应用研究 学科
关键词 点云 曲率信息 特征点选取 对应点寻找 人工蜂群算法
年,卷(期) 2020,(4) 所属期刊栏目 算法研究探讨
研究方向 页码范围 999-1003,1024
页数 6页 分类号 TP751.1
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2018.10.0732
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈雷 天津大学电气自动化与信息工程学院 50 248 10.0 13.0
5 付鲲 天津大学电气自动化与信息工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (37)
共引文献  (78)
参考文献  (23)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(6)
  • 参考文献(2)
  • 二级参考文献(4)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(5)
  • 参考文献(2)
  • 二级参考文献(3)
2010(5)
  • 参考文献(3)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(4)
  • 参考文献(2)
  • 二级参考文献(2)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
点云
曲率信息
特征点选取
对应点寻找
人工蜂群算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导