基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
网络流量预测对于网络性能和服务质量的提高具有重要意义.提出一种基于整体平均经验模态分解EEMD(Ensemble Empirical Mode Decomposition)与径向基函数RBF(Radial Basis Function)神经网络的预测模型,利用EEMD将长相关流量转化为短相关流量并应用RBF神经网络模型对流量数据进行建模及预测,不仅降低了算法的复杂度,而且有利于网络流量的实时预测.仿真试验结果表明,相比于自回归分数综合滑动平均模型FARIMA(Fractional AutoRegressive Integrated Moving Average Mode)、RBF神经网络模型及EMD(Empirical Mode Decomposition)与自回归滑动平均模型ARMA(AutoRegressive Moving Average Model),该模型具有更高的预测精度和良好的自适应性.
推荐文章
基于RBF算法的机房网络流量预测
神经网络
网络流量
预测RBF算法
BP算法
组合神经网络的网络流量预测研究
网络流量
遗传算法
神经网络
预测
基于混沌理论和神经网络的网络流量预测
混沌
神经网络
网络流量
预测
基于小波神经网络的网络流量预测研究
小波神经网络
网络流量
预测研究
训练样本
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于EEMD与RBF神经网络的网络流量预测
来源期刊 计算机应用与软件 学科 工学
关键词 流量预测 整体平均经验模态分解 RBF神经网络
年,卷(期) 2014,(6) 所属期刊栏目 应用技术与研究
研究方向 页码范围 72-74,83
页数 4页 分类号 TP393.0
字数 3121字 语种 中文
DOI 10.3969/j.issn.1000-386x.2014.06.021
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘付斌 安阳师范学院物理与电气工程学院 6 42 3.0 6.0
2 冯丽娜 安阳师范学院物理与电气工程学院 2 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (37)
共引文献  (126)
参考文献  (7)
节点文献
引证文献  (3)
同被引文献  (22)
二级引证文献  (10)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(2)
  • 参考文献(1)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(10)
  • 参考文献(0)
  • 二级参考文献(10)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(5)
  • 参考文献(2)
  • 二级参考文献(3)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(4)
  • 引证文献(0)
  • 二级引证文献(4)
2019(5)
  • 引证文献(0)
  • 二级引证文献(5)
研究主题发展历程
节点文献
流量预测
整体平均经验模态分解
RBF神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导