高光谱图像在遥感领域中的应用越来越广泛,但由于自身的高数据维、波段间的高冗余度等特性给图像处理带来了一定困难,针对这个问题,提出一种基于类间可分性准则的改进萤火虫仿生算法,进行高光谱遥感波段选择.在分析萤火虫算法机理的基础上,阐述了利用该算法进行高光谱波段选择的思路,并构造波段相似性矩阵,选择欧氏距离、JM距离、光谱信息散度和离散度作为可分性准则来设置目标函数,根据目标函数值的优劣选择优势波段.最后,使用HYDICE Washington DC Mall和HyMap Purdue Campus两个高光谱遥感影像数据进行实验验证,并利用支持向量机分类器对最佳波段组合进行精度评价,证明该算法的可行性和有效性.