基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对多数聚类集成方法忽视潜在信息或获取潜在信息方法复杂这一缺点,提出一种基于链接的模糊聚类集成方法。该算法首先利用模糊聚类算法建立集成信息矩阵,然后使用相应的链接方法将集成信息矩阵转化为反映数据相关性的权重图,最后运用图划分技术得到最终结果。实验结果表明,新提出的算法可以有效地获取潜在信息,同时提高聚类质量。
推荐文章
基于核独立分量分析的模糊核聚类神经网络集成方法
核独立分量分析
特征提取
模糊核聚类
选择性聚类集成
基于聚类与排序修剪的分类器集成方法
选择性集成
混淆矩阵
聚类
排序修剪
差异性
基于信息度量和聚类的模式集成方法
信息度量
属性聚类
属性识别
属性匹配
模式集成
点互信息构造
基于聚类选择的分类器集成
分类器集成
聚类
分类器选择
差异性
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于链接的模糊聚类集成方法
来源期刊 电子科技大学学报 学科 工学
关键词 聚类集成 模糊聚类 链接 潜在信息
年,卷(期) 2014,(6) 所属期刊栏目 计算机工程与应用
研究方向 页码范围 887-892
页数 6页 分类号 TP391
字数 4867字 语种 中文
DOI 10.3969/j.issn.1001-0548.2014.06.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨燕 西南交通大学信息科学与技术学院 97 1192 16.0 32.0
2 王红军 西南交通大学信息科学与技术学院 14 93 4.0 9.0
3 贾真 西南交通大学信息科学与技术学院 36 396 13.0 18.0
4 冯晨菲 西南交通大学信息科学与技术学院 3 13 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (16)
共引文献  (99)
参考文献  (11)
节点文献
引证文献  (7)
同被引文献  (8)
二级引证文献  (9)
1971(1)
  • 参考文献(1)
  • 二级参考文献(0)
1973(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(7)
  • 参考文献(2)
  • 二级参考文献(5)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(4)
  • 引证文献(4)
  • 二级引证文献(0)
2018(3)
  • 引证文献(1)
  • 二级引证文献(2)
2019(6)
  • 引证文献(0)
  • 二级引证文献(6)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
聚类集成
模糊聚类
链接
潜在信息
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子科技大学学报
双月刊
1001-0548
51-1207/T
大16开
成都市成华区建设北路二段四号
62-34
1959
chi
出版文献量(篇)
4185
总下载数(次)
13
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导