基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
李群机器学习作为一种新的学习范式已被学术界广泛关注。根据李群的连通性质,将具有不同类别特征的研究对象映射到多连通李群空间,并从各个单连通李群空间上连线的同伦等价出发,运用覆盖的思想寻找对应不同类别的最优道路等价表示,从而用多连通李群的多值表示来呈现图像的类别信息,因此提出了多连通李群覆盖学习算法。在MPEG7_CE-Shape01_Part_B图像库的图像和MNIST手写体数字图像上进行了实验验证,结果表明与两种基于李群均值的学习算法相比,多连通李群覆盖学习算法具有较好的分类效果。
推荐文章
多李群核覆盖学习算法在图像分类上的应用
李群
流形结构
覆盖学习算法
核函数
基于连通区域的传真图像版面分割与分类算法
传真图像
版面分析
连通区域
版面分割
文字区域
遗传规划多类图像分类算法研究
图像分类
遗传规划
等差权值中心动态边界确定算法
权值快速下降中心动态边界确定算法
基于多核学习SVM的图像分类识别算法
支持向量机
多核学习
行人检测
图像识别
直方图交叉核
交叉验证
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多连通李群覆盖学习算法在图像分类上的应用
来源期刊 计算机科学与探索 学科 工学
关键词 李群机器学习 多连通李群 李群覆盖学习算法
年,卷(期) 2014,(9) 所属期刊栏目 人工智能与模式识别
研究方向 页码范围 1101-1112
页数 12页 分类号 TP181
字数 7127字 语种 中文
DOI 10.3778/j.issn.1673-9418.1403055
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李凡长 苏州大学计算机科学与技术学院 136 774 15.0 18.0
2 严晨 苏州大学计算机科学与技术学院 3 18 3.0 3.0
3 邹鹏 苏州大学计算机科学与技术学院 5 12 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (5)
参考文献  (11)
节点文献
引证文献  (5)
同被引文献  (11)
二级引证文献  (7)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(3)
  • 参考文献(2)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(4)
  • 引证文献(1)
  • 二级引证文献(3)
2018(4)
  • 引证文献(1)
  • 二级引证文献(3)
研究主题发展历程
节点文献
李群机器学习
多连通李群
李群覆盖学习算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学与探索
月刊
1673-9418
11-5602/TP
大16开
北京市海淀区北四环中路211号北京619信箱26分箱
82-560
2007
chi
出版文献量(篇)
2215
总下载数(次)
4
总被引数(次)
10748
论文1v1指导