针对计算机网络快速发展产生的拥塞现象,在以往的研究基础上利用萤火虫群优化方法提出一种新的预测算法PGS(Prediction method based on Glowworm Swarm).该算法首先将到达流量视作萤火虫群,节点服务率视作吸引度,通过对萤火虫个体执行移动操作和随机飞行操作来获得最优位置和吸引度,以此达到提高预测精度的目的.同时,结合OPENT和MATLAB进行仿真实验,深入研究了影响PGS算法预测误差的关键因素.最后,对比分析了小波变换预测方法,本文算法的预测误差降低了1.08%,结果表明PGS具有较好的适应性.