基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
论文提出了一种基于EMD进化概率神经网络的纹理图像识别方法.首先,对原始信号进行经验模式分解,将其分解为多个平稳的固有模式函数之和;再从各IMF分量中提取主要能量特征作为进化概率神经网络的输入参数来识别纹理图像.对不同的自然纹理图像进行了实验,并将结果与小波进化概率神经网络的结果做了比较.实验结果证明,论文方法的正确识别率和识别精度高于小波进化概率神经网络.
推荐文章
基于双概率神经网络的纹理图像识别
纹理识别
小波包变换
差异演化
双概率神经网络
基于小波概率神经网络的彩色纹理识别
纹理
小波变换
概率神经网络(PNN)
小波概率神经网络(WPNN)
纹理识别
EMD-SVM在纹理图像识别中的应用
经验模式分解
支持向量机
固有模式函数
纹理识别
基于双概率神经网络的纹理图像识别
纹理识别
小波包变换
差异演化
双概率神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于EMD进化概率神经网络的纹理图像识别
来源期刊 计算机与数字工程 学科 工学
关键词 经验模式分解 固有模式函数 概率神经网络 差异进化 纹理分类
年,卷(期) 2014,(9) 所属期刊栏目 图像处理
研究方向 页码范围 1713-1716
页数 4页 分类号 TP391.41
字数 2637字 语种 中文
DOI 10.3969/j.issn1672-9722.2014.09.040
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 肖淑苹 西安翻译学院工程技术学院 19 40 3.0 6.0
2 孙亚红 西安翻译学院工程技术学院 22 14 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (80)
参考文献  (9)
节点文献
引证文献  (2)
同被引文献  (7)
二级引证文献  (6)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(3)
  • 引证文献(1)
  • 二级引证文献(2)
2020(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
经验模式分解
固有模式函数
概率神经网络
差异进化
纹理分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
总被引数(次)
47579
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导