作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
水是生命之源,降水量的变化直接影响着农业生产和生态平衡.本文立足于辽宁省东港站1970年~2013年共44年的降水量资料,运用支持向量机模型,建立基于支持向量机(SVM)的降水量预测模型,并将SVM模型与BP人工神经网络预测模型预测结果进行对比分析.结果表明:基于支持向量机(SVM)的降水量预测模型预测精度优于BP神经网络预测模型,且收敛速度快,迭代次数少;能够客观的反应东港市降水量情况,且方法简单、可行,为辽宁省东港市的降水量预测提供了较为有效的方法.
推荐文章
基于SVM-CEEMDAN-BiLSTM模型的日降水量预测
日尺度降水量
预测
深度学习
BiLSTM网络
降水量的加权型马尔科夫模型预测
降水量
马尔科夫模型
预测
基于支持向量机的需水预测研究
统计学习理论
支持向量机
回归模型
需水预测
华山地区降水特征分析与年降水量预测
降水特征分析
预测
滑动马尔可夫预测模型
云模型
华山地区
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量机的东港市降水量预测模型研究
来源期刊 陕西水利 学科 工学
关键词 支持向量机 BP神经网络 降水量预测
年,卷(期) 2014,(2) 所属期刊栏目 科技
研究方向 页码范围 134-135
页数 2页 分类号 TV124
字数 2289字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 倪远臣 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (16)
共引文献  (69)
参考文献  (7)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(2)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
支持向量机
BP神经网络
降水量预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
陕西水利
月刊
1673-9000
61-1109/TV
大16开
陕西省西安市尚德路150号
1932
chi
出版文献量(篇)
11441
总下载数(次)
19
总被引数(次)
7924
论文1v1指导