原文服务方: 机械传动       
摘要:
针对无先验知识模式下机械故障特征的选择、融合存在盲目性、片面性,提出了一种基于特征评估与核主分量分析的齿轮故障特征提取与分类方法.该方法采用小波包分解对原始信号进行分解,分别提取原始信号和各分解信号的时域指标组成联合特征,然后确定了稳定性门限值与敏感性筛选比例因子,采用稳定性与敏感性联合评估方法对特征进行评估,并利用核主分量分析方法提取剩余联合特征中的非线性特征,实现不同齿轮故障状态的分类.实验结果表明,这种集成了小波包分解、特征联合评估方法和核主分量分析的齿轮故障分类方法能够更好地提取齿轮故障的特征信息,从大量的故障特征中剔除不稳定与不敏感的劣质特征,明显改善了核主分量分析提取齿轮故障非线性特征的效果.
推荐文章
基于平移不变核主分量分析的雷达目标识别研究
核主分量分析
零相位表示法
特征提取
高分辨率距离像
BP神经网络
基于形态分量分析的变工况齿轮箱故障诊断研究
形态分量分析
变工况
瞬时功率谱
阶次跟踪
齿轮箱故障诊断
主分量分析和因子隐Markov模型在机械故障诊断中的应用
主分量分析
因子隐Markov模型
冗余消除
故障诊断
模式识别
基于主分量分析与支持向量机的人脸检测研究
人脸检测
主分量分析
支持向量机
模式分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于特征评估与核主分量分析的齿轮故障分类方法
来源期刊 机械传动 学科
关键词 特征评估 核主分量分析 小波包分解 特征提取 齿轮
年,卷(期) 2014,(11) 所属期刊栏目 试验分析
研究方向 页码范围 105-110
页数 6页 分类号
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (82)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(6)
  • 参考文献(2)
  • 二级参考文献(4)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(5)
  • 参考文献(2)
  • 二级参考文献(3)
2004(7)
  • 参考文献(1)
  • 二级参考文献(6)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
特征评估
核主分量分析
小波包分解
特征提取
齿轮
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械传动
月刊
1004-2539
41-1129/TH
大16开
河南省郑州市科学大道149号
1977-01-01
中文
出版文献量(篇)
6089
总下载数(次)
0
总被引数(次)
31469
论文1v1指导