基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的统计不相关鉴别分析方法使用样本的均值来估计期望,计算出总体散度矩阵。这些方法在数据不满足高斯分布的情况下会出现大的偏差,影响最优鉴别特征的提取。为了解决该问题,文中结合二维鉴别分析的思想,分别提出了基于局部的二维统计不相关鉴别变换( L2DUDT)方法和基于全局加权的二维统计不相关鉴别变换( WG2DUDT)方法。L2DUDT通过用样本的近邻中心来定义每个样本的期望,而WG2DUDT用样本间的欧几里得距离加权来定义期望。基于AR和FERET人脸数据库的实验表明,文中提出的方法与一些相关方法相比,有效地提高了识别性能。
推荐文章
不相关最佳鉴别矢量集的有效算法
特征抽取
小样本问题
广义线性鉴别分析
不相关鉴别矢量
人脸识别
局部统计不相关非线性鉴别变换
特征提取
核空间
统计不相关约束
局部统计不相关核鉴别变换
不相关局部保持鉴别分析算法
特征提取
不相关局部保持鉴别分析
类内散布矩阵
类间散布矩阵
不相关鉴别分析改进算法
线性鉴别分析
不相关鉴别分析
特征抽取
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 局部和全局加权的二维统计不相关鉴别分析
来源期刊 计算机技术与发展 学科 工学
关键词 统计不相关鉴别分析 鉴别特征 二维鉴别分析 二维统计不相关鉴别变换
年,卷(期) 2014,(6) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 114-117
页数 4页 分类号 TP301
字数 3311字 语种 中文
DOI 10.3969/j.issn.1673-629X.2014.06.029
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 荆晓远 南京邮电大学自动化学院 52 99 5.0 6.0
2 姚永芳 南京邮电大学自动化学院 16 20 2.0 2.0
3 黄明晓 南京邮电大学自动化学院 2 2 1.0 1.0
4 李力 南京邮电大学自动化学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (33)
参考文献  (11)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1975(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
统计不相关鉴别分析
鉴别特征
二维鉴别分析
二维统计不相关鉴别变换
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导