基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对LPCC只反应语音静态特征且不能突出其低频局部特征问题,提出一种以HHT倒谱系数为特征的说话人识别算法,HHT的经验模态分解使语音的低频局部特征得到更好的描述,Hilbert变换能够刻画语音动态特性,改进了LPCC的不足。用经验模态分解将语音分解为一系列固有模态函数分量并做Hilbert变换求得Hilbert边际谱,计算总边际谱的对数功率谱并做DCT得13维倒谱系数,将此特征送入高斯混合模型进行说话人识别。仿真实验结果表明,基于HHT倒谱系数的说话人识别算法,相较LPCC识别率提高了12.59%,但特征提取时间增加了19.27 s。
推荐文章
基于小波倒谱系数和概率神经网络的取证说话人识别模型
小波变换
概率神经网络
取证说话人识别
基于加权Mel倒谱系数的说话人识别
特征提取
说话人识别
加权mel倒谱
差分和加权Mel倒谱混合参数应用于说话人识别
说话人识别
加权Mel频率倒谱系数
混合参数
矢量量化
基于矢量量化方法的说话人识别技术
矢量量化
说话人识别
线性预测倒谱系数
美尔倒谱系数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于HHT倒谱系数的说话人识别算法
来源期刊 计算机工程与应用 学科 工学
关键词 说话人识别 希尔伯特黄变换(HHT) 倒谱系数
年,卷(期) 2014,(3) 所属期刊栏目 信号处理
研究方向 页码范围 198-202
页数 5页 分类号 TN912
字数 4647字 语种 中文
DOI 10.3778/j.issn.1002-8331.1203-0750
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 于凤芹 江南大学物联网工程学院 143 708 12.0 18.0
2 杜晓青 江南大学物联网工程学院 2 12 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (6)
节点文献
引证文献  (8)
同被引文献  (47)
二级引证文献  (6)
1981(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(2)
  • 参考文献(2)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(5)
  • 引证文献(1)
  • 二级引证文献(4)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
说话人识别
希尔伯特黄变换(HHT)
倒谱系数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导