基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文以超声回波信号去噪为目的,研究了基于经验模态分解(EMD)分解的去噪方法。分解过程中固有模态函数(IMF)信号与噪声混叠,还会产生虚假分量,提出了基于核主成分分析(KPCA)的经验模态分解算法。首先对原信号进行经验模态分解得IMF分量;然后对信号进行KPCA变换,将各分量获得的贡献率与阈值比较,最终以去除分量中夹杂的噪声。为证明本文方法的有效性,还给出了仿真实验的仿真结果。
推荐文章
基于EMD改进算法的爆破振动信号去噪
爆破振动
去噪
模态混叠
主成分分析
经验模态分解
集总经验模态分解
鲁棒的加权核主成分分析算法
特征提取
人脸识别
核主成分分析
鲁棒
基于主成分分析的高光谱遥感图像非局部去噪
高光谱遥感图像
高斯白噪声
PCA
BM3D
基于测地距离的核主成分分析方法
测地距离
核主成分分析
特征提取
数据分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于核主成分分析的EMD去噪算法
来源期刊 数字技术与应用 学科 工学
关键词 超声信号 经验模态分解 核主成分分析
年,卷(期) 2014,(1) 所属期刊栏目 算法分析
研究方向 页码范围 120-120
页数 1页 分类号 TP2
字数 273字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 何云玲 东北电力大学自动化工程学院 1 0 0.0 0.0
2 刘琳 7 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (92)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
超声信号
经验模态分解
核主成分分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数字技术与应用
月刊
1007-9416
12-1369/TN
16开
天津市
6-251
1983
chi
出版文献量(篇)
20434
总下载数(次)
106
总被引数(次)
35701
论文1v1指导