基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
异常检测问题中的数据可以看作是正常信息和异常信息的高度混合,在使得正常信息损失最小的情况下,异常点集合就是前K个包含最多异常信息的样本。启发于这种思想,提出一种基于稀疏贝叶斯回归的异常检测模型,该方法通过在传统的核函数基础上融入Bayesian推理框架,对数据进行回归估计,利用残差法找出偏离程度较大的样本为异常样本。实验结果表明,该方法具有良好的稀疏性和检测精度。
推荐文章
基于贝叶斯的Windows注册表访问的异常检测研究
异常检测
注册袁访问
贝叶斯算法
入侵检测系统
稀疏贝叶斯回归及其在谐波电流异常检测中的应用
电能质量
稀疏贝叶斯回归
谐波电流
异常检测
残差
基于稀疏贝叶斯估计的单图像超分辨率算法
单图像超分辨率
超分辨率
贝叶斯估计
回归
稀疏表示
基于贝叶斯网络的健壮社团检测
复杂网络
健壮社团
贝叶斯网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏贝叶斯回归的异常检测
来源期刊 计算机与现代化 学科 工学
关键词 稀疏贝叶斯回归 残差法 异常检测 回归估计 稀疏性
年,卷(期) 2015,(1) 所属期刊栏目 数据库与数据挖掘
研究方向 页码范围 57-60
页数 4页 分类号 TP18
字数 3216字 语种 中文
DOI 10.3969/j.issn.1006-2475.2015.01.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 冯爱民 南京航空航天大学计算机科学与技术学院 19 158 7.0 12.0
2 苏乐群 南京航空航天大学计算机科学与技术学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (76)
共引文献  (90)
参考文献  (10)
节点文献
引证文献  (2)
同被引文献  (11)
二级引证文献  (6)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(5)
  • 参考文献(1)
  • 二级参考文献(4)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(6)
  • 参考文献(1)
  • 二级参考文献(5)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(5)
  • 参考文献(1)
  • 二级参考文献(4)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2005(8)
  • 参考文献(1)
  • 二级参考文献(7)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(11)
  • 参考文献(0)
  • 二级参考文献(11)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(10)
  • 参考文献(2)
  • 二级参考文献(8)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(4)
  • 引证文献(1)
  • 二级引证文献(3)
研究主题发展历程
节点文献
稀疏贝叶斯回归
残差法
异常检测
回归估计
稀疏性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与现代化
月刊
1006-2475
36-1137/TP
大16开
南昌市井冈山大道1416号
44-121
1985
chi
出版文献量(篇)
9036
总下载数(次)
25
论文1v1指导