作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对回归支持向量机( SVR)惩罚因子C和核函数参数g的选取对模型性能有着关键性影响以及在实际应用中存在参数选取等困难,提出基于启发式算法的PSO -SVR和GA-SVR年径流预测模型,以新疆开都河大山口水文站年径流预测为例进行实例研究。首先,利用DPS软件选取年径流影响因子,确定输入向量;其次,基于粒子群算法( PSO)、遗传算法( GA)基本原理,采用PSO、GA优化SVR惩罚因子C和核函数参数g,构建PSO-SVR 和GA-SVR年径流预测模型,并构建基于网格划分( GS)与交叉验证( CV)算法相结合的GS-SVR模型作为对比模型。最后,利用所构建的模型对实例进行预测分析。结果表明:PSO-SVR和GA-SVR模型对开都河1996—2012年径流预测的平均相对误差绝对值分别为2.65%、3.22%,平均绝对误差分别为1.055亿m3和1.291亿m3,预测精度和泛化能力均优于GS-SVR模型,表明PSO和GA能有效对SVR惩罚因子C和核函数参数g进行优化,具有预测精度高、泛化能力强以及稳健性能好的特点。相对而言,PSO-SVR模型性能略优于GA-SVR模型。
推荐文章
基于支持向量机补偿的灰色模型网络流量预测
灰色模型
支持向量机
网络流量
残差序列
补偿
预测精度
混沌时间序列支持向量机模型及其在径流预测中应用
混沌
相空间重构
水文时间序列
支持向量机
径向基核函数
径流预测
基于改进支持向量机的林业资金投资预测方法
林业资金投资
回归预测
时间序列
支持向量机
粒子群算法
基于IPSO混沌支持向量机的网络流量预测研究
网络流量预测
混沌支持向量机
改进粒子群算法
遗传算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进支持向量机模型的开都河年径流量预测
来源期刊 西北水电 学科 工学
关键词 粒子群算法 遗传算法 支持向量机 径流预测 开都河
年,卷(期) 2015,(4) 所属期刊栏目 水文、水资源、环保
研究方向 页码范围 1-5
页数 5页 分类号 TV121.4
字数 4753字 语种 中文
DOI 10.3969/j.issn.1006-2610.2015.04.001
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (59)
共引文献  (128)
参考文献  (9)
节点文献
引证文献  (4)
同被引文献  (40)
二级引证文献  (3)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(6)
  • 参考文献(0)
  • 二级参考文献(6)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(8)
  • 参考文献(0)
  • 二级参考文献(8)
2004(9)
  • 参考文献(0)
  • 二级参考文献(9)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(3)
  • 参考文献(2)
  • 二级参考文献(1)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(6)
  • 参考文献(2)
  • 二级参考文献(4)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(4)
  • 参考文献(4)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(4)
  • 引证文献(2)
  • 二级引证文献(2)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
粒子群算法
遗传算法
支持向量机
径流预测
开都河
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西北水电
双月刊
1006-2610
61-1260/TV
大16开
西安市电子工业园区丈八东路18号
52-130
1982
chi
出版文献量(篇)
3030
总下载数(次)
3
总被引数(次)
7496
论文1v1指导