作者:
原文服务方: 微电子学与计算机       
摘要:
研究网络流量预测问题,网络流量具有突发性、周期性、非线性特点,传统网络流量预测模型无法建立准确预测模型,导致预测误差大,预测精度低.为了提高网络流量的预测精度,提出一种小波分解和支持向量机的网络流量预测模型.首先采用小波变换对网络流量进行分解,把网络流量不同特性成分分离出来,然后采用支持向量机对各分量进行预测,最后采用小波变换对各分量预测结果进行重构,得到网络流量的最终预测结果.仿真实验结果表明,相对其它预测模型,提高了网络流量的预测精度,为网络流量预测优化提供了可靠依据.
推荐文章
小波分析和相关向量机的网络流量混沌预测
网络流量
相关向量机
小波分析
混沌理论
基于小波分解的网络流量时间序列建模与预测
网络流量
小波分解
时间序列
预测
基于支持向量机补偿的灰色模型网络流量预测
灰色模型
支持向量机
网络流量
残差序列
补偿
预测精度
遗传算法优化支持向量机的网络流量混沌预测
遗传算法优化
支持向量机
网络流量
混沌预测
相空间重构
预测模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波分解和支持向量机的网络流量组合预测
来源期刊 微电子学与计算机 学科
关键词 网络流量 小波分解 支持向量机 粒子群算法
年,卷(期) 2012,(9) 所属期刊栏目
研究方向 页码范围 193-196,200
页数 分类号 TP391
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 段谟意 南京铁道职业技术学院软件学院 33 74 5.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (58)
共引文献  (102)
参考文献  (9)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(4)
  • 参考文献(0)
  • 二级参考文献(4)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(7)
  • 参考文献(0)
  • 二级参考文献(7)
2002(6)
  • 参考文献(0)
  • 二级参考文献(6)
2003(6)
  • 参考文献(1)
  • 二级参考文献(5)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(9)
  • 参考文献(2)
  • 二级参考文献(7)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(5)
  • 参考文献(2)
  • 二级参考文献(3)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
网络流量
小波分解
支持向量机
粒子群算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导