基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决含有大量未标记样本的图像分类问题,提出了基于概率密度分布一致约束的最小最大概率机图像分类算法(image classification algorithm based on minimax probability machine regularized by probability density con-census,PDMPM)。用概率密度估计函数对标记图像样本和未标记图像样本在超平面所在空间的分布进行估计,最小化标记图像样本和未标记图像样本在超平面所在空间的分布差异,得到概率密度估计约束项。把概率密度估计约束项融入到非线性最小最大概率机并用于图像分类。在耶鲁大学人脸数据库、加利福尼亚理工学院101类图像数据库的5类和15场景数据库中的10类分类准确率的试验中,该算法较非线性最小最大概率机大约平均提高了3.99%,从而表明该方法充分利用了未标记图像样本包含的分布信息来约束标记图像样本的分布,使得图像分类超平面更加准确。
推荐文章
基于最小最大概率机的虹膜图像分类方法研究
虹膜
最小最大概率机
分类
相异度
基于数据分布一致性最小最大概率机
数据分布一致性
最小最大概率机
决策超平面
一种基于独立成分分析和最小最大概率机的人脸识别系统
人脸识别
haar特征
独立成分分析(ICA)
最小最大概率机(MPM)
证券组合投资的最大概率与最小风险分析
证券组合投资
当前价格
最大概率
最小风险
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于概率密度分布一致约束的最小最大概率机图像分类算法
来源期刊 山东大学学报(工学版) 学科 工学
关键词 图像分类 未标记样本 概率密度估计 分类超平面 最小最大概率机
年,卷(期) 2015,(5) 所属期刊栏目 机器学习与数据挖掘
研究方向 页码范围 13-21
页数 9页 分类号 TP391
字数 6162字 语种 中文
DOI 10.6040/j.issn.1672-3961.2.2015.168
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王士同 江南大学数字媒体学院 528 3424 23.0 37.0
2 王晓初 江南大学数字媒体学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (27)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1979(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像分类
未标记样本
概率密度估计
分类超平面
最小最大概率机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山东大学学报(工学版)
双月刊
1672-3961
37-1391/T
大16开
济南市经十路17923号
24-221
1956
chi
出版文献量(篇)
3095
总下载数(次)
14
总被引数(次)
24236
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导