基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文以降低数据选取范围的依赖性、提高货运量近期预测精度为目标,采用K-MEANS聚类和随机期望值相结合的方法,建立基于聚类-随机期望值的铁路货运量预测模型.通过应用历年数据对该模型进行验证分析,说明了该方法的可行性.
推荐文章
基于FOA优化混合核LSSVM的铁路货运量预测
铁路货运量
预测方法
混合核LSSVM
果蝇优化算法
基于灰色模型的铁路货运量预测 ——以陕西省铁路货运为例
铁路货运
灰色模型
灰色预测
数据序列
后验差检验
预测精度
基于参数化三角范数的铁路货运量选择集成预测
铁路货运量
预测
选择性集成学习
Yager三角范数
遗传算法
基于指数平滑法预测企业货运量
指数平滑法
预测
货运量
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于聚类-随机期望值的铁路货运量预测研究
来源期刊 公路交通科技·应用技术版 学科 交通运输
关键词 货运需求 预测 随机期望值 聚类分析
年,卷(期) 2015,(4) 所属期刊栏目 其他
研究方向 页码范围 250-252
页数 3页 分类号 U294.1
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (132)
共引文献  (213)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1982(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(6)
  • 参考文献(0)
  • 二级参考文献(6)
2001(7)
  • 参考文献(0)
  • 二级参考文献(7)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(14)
  • 参考文献(1)
  • 二级参考文献(13)
2004(17)
  • 参考文献(2)
  • 二级参考文献(15)
2005(10)
  • 参考文献(2)
  • 二级参考文献(8)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(10)
  • 参考文献(1)
  • 二级参考文献(9)
2008(10)
  • 参考文献(1)
  • 二级参考文献(9)
2009(8)
  • 参考文献(1)
  • 二级参考文献(7)
2010(9)
  • 参考文献(1)
  • 二级参考文献(8)
2011(9)
  • 参考文献(4)
  • 二级参考文献(5)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(5)
  • 参考文献(2)
  • 二级参考文献(3)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(11)
  • 参考文献(1)
  • 二级参考文献(10)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(11)
  • 参考文献(1)
  • 二级参考文献(10)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
货运需求
预测
随机期望值
聚类分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
公路交通科技·应用技术版
月刊
1002-0268
11-2279/U
北京市海淀区西土城路8号
chi
出版文献量(篇)
7281
总下载数(次)
17
论文1v1指导