基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
社区结构是社交网络最重要的拓扑特性之一,有助于理解用户分布和用户行为,提高链接预测的精确度。通过分析社区结构,结合贝叶斯理论,提出了一种新的基于社区信息的链接预测方法,并应用于真实的社交网络数据中对未来链接进行分析与预测。实验演示了该方法的优点和有效性,取得了很好的预测效果。
推荐文章
基于链接分析的Web社区发现技术的研究
Web社区
PageRank
HITS
二分图核
最大流
基于主题和链接分析的微博社区发现算法
微博
社区发现
潜层Dirichlet分配
主题模型
链接分析
标签传递算法
基于社区结构的科研合作关系分析与预测
科研网络
社区结构
合作关系预测
关系分析
社区信息
一种采用社团信息的链接预测方法
链接预测
社团发现
监督学习
社会网络分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于社区信息的链接分析与预测研究
来源期刊 安徽工程大学学报 学科 工学
关键词 链接预测 社会网络分析 社区结构 链接分析
年,卷(期) 2015,(2) 所属期刊栏目 自动化与信息工程
研究方向 页码范围 62-65
页数 4页 分类号 TP391
字数 2771字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨磊 安徽工程大学计算机与信息学院 7 29 2.0 5.0
2 李臣龙 安徽工程大学计算机与信息学院 10 31 2.0 5.0
3 汪婧 安徽工程大学计算机与信息学院 12 22 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (36)
共引文献  (127)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1953(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(2)
  • 参考文献(1)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
链接预测
社会网络分析
社区结构
链接分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
安徽工程大学学报
双月刊
2095-0977
34-1318/N
大16开
安徽省芜湖市赭山东路8号
1983
chi
出版文献量(篇)
1898
总下载数(次)
5
总被引数(次)
6969
论文1v1指导