为实现机器视觉准确判别葡萄干品种,提出了一种基于压缩感知理论( Compressed Sensing, CS)的葡萄干品种分类方法。以3种葡萄干为研究对象,并提取葡萄干图像的形态、颜色和纹理特征参数,得到葡萄干训练样本的数据词典矩阵。压缩感知理论分类算法首先利用由葡萄干图像特征参数组成的数据词典矩阵对每一个葡萄干测试样本进行稀疏性表示,得到稀疏向量。然后利用稀疏向量对葡萄干测试样本进行重构,并计算重构样本与测试样本之间的残差,最后通过比较残差的大小来确定测试样本的类别。将提出的方法与最小二乘法支持向量机( Least squares support vector machine,LSSvM)和BP( Back Propagation)网络的识别结果做了对比和分析。试验结果表明,基于压缩感知理论的分类方法对于3个葡萄干品种的综合分类准确率为99.17%,获得了最好的分类效果。