基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了实时监测和精准预测煤矿回采工作面绝对瓦斯涌出量,提出猫群算法(CSO)优化相关支持向量机(RVM)的绝对瓦斯涌出量预测方法.相关向量机的组合核函数可实现多特征空间的信息融合,为有限样本、高维数瓦斯涌出量预测建模问题提供一种行之有效的方法.并用CSO算法对RVM瓦斯涌出量预测模型的核函数权重p和高斯核参数σ快速寻优.利用矿井无线传感器网络检测到的各项历史数据试验.结果表明,相比BP、SVM算法,该耦合模型有效提高了预测精度,具有更好的泛化能力,为矿井瓦斯预测提供理论支持.
推荐文章
基于径向基的瓦斯涌出量灰色预测模型
瓦斯涌出量
灰色预测
RBF
预测精度
基于模糊粗糙集的瓦斯涌出量预测模型的研究
瓦斯量预测
模糊粗糙集
神经网络
矿井瓦斯涌出量预测研究新方法
非线性特征
灰色理论
遗传神经网络
瓦斯涌出量
基于LSSVM与CPSO的瓦斯涌出量组合预测
瓦斯涌出量
非线性组合预测
最小二乘支持向量机,经典粒子群算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于CSO-RVM的瓦斯涌出量预测模型研究
来源期刊 传感技术学报 学科 工学
关键词 瓦斯涌出量预测 猫群算法(CSO) 相关支持向量机(RVM) 组合核函数 信息融合
年,卷(期) 2015,(10) 所属期刊栏目 传感器信号处理
研究方向 页码范围 1508-1512
页数 5页 分类号 TP212|TP183
字数 4148字 语种 中文
DOI 10.3969/j.issn.1004-1699.2015.10.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 付华 辽宁工程技术大学电气与控制工程学院 242 1698 20.0 28.0
2 王雨虹 辽宁工程技术大学电气与控制工程学院 26 188 8.0 13.0
3 王馨蕊 辽宁工程技术大学电气与控制工程学院 7 64 4.0 7.0
4 单敏柱 辽宁工程技术大学电气与控制工程学院 4 21 4.0 4.0
5 任仁 辽宁工程技术大学电气与控制工程学院 3 12 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (56)
共引文献  (158)
参考文献  (12)
节点文献
引证文献  (4)
同被引文献  (10)
二级引证文献  (0)
1983(2)
  • 参考文献(0)
  • 二级参考文献(2)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(11)
  • 参考文献(1)
  • 二级参考文献(10)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(11)
  • 参考文献(3)
  • 二级参考文献(8)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
瓦斯涌出量预测
猫群算法(CSO)
相关支持向量机(RVM)
组合核函数
信息融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
传感技术学报
月刊
1004-1699
32-1322/TN
大16开
南京市四牌楼2号东南大学
1988
chi
出版文献量(篇)
6772
总下载数(次)
23
总被引数(次)
65542
论文1v1指导