相对于传统生化测定方法,基于近红外光谱(Near infrared spectroscopy,NIRS)玉米籽粒蛋白质含量检测是一种快速、非破坏、且适用于多组分同时检测的新方法。但在建模过程中,由于奇异数据(异常值)的存在会影响近红外光谱模型的预测精度和稳定性,我们采用奇异数据筛选法剔除了玉米籽粒近红外光谱中的奇异数据并建立了玉米籽粒蛋白质含量的偏最小二乘支持向量机(Least squares support vector machine,LS-SVM)模型。本文分别采用杠杆值法(Leverage)、半数重采样法(Resampling by Half-Mean,RHM)和蒙特卡洛采样法(Monte-Carlo Sampling,MCS)剔除了玉米籽粒蛋白质光谱数据中的奇异数据并对模型结果进行比较。在剔除奇异数据的基础上,采用偏最小二乘回归法(Partial least squares regression,PLSR)提取主成分,并基于小生境蚁群算法(Niche ant colony algorithm,NACA)优化偏最小二乘支持向量机(LS-SVM)模型参数(γ和σ2),建立基于LS-SVM的玉米籽粒蛋白质定量分析模型。结果表明,采用3种奇异数据筛选法剔除奇异数据后所建LS-SVM模型的预测结果都优于采用原光谱数据所建模型,相比较而言,蒙特卡洛采样法为基于近红外光谱检测玉米籽粒蛋白质的最佳奇异数据筛选法。