基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于图像数据的冗余性较高,传统的图像分类方法的分类准确率较低,深度学习方法较传统方法提高了图像分类的准确率,但其训练较为复杂。提出了一种浅层模糊K均值图像分类网络,其基本思想是利用模糊K均值聚类求出的聚类中心构造图像特征向量,再利用特征向量训练浅层网络分类器,最后利用训练好的分类器完成图像分类。通过与传统方法的对比,验证了该方法能够较好地完成图像分类任务,并对实验结果进行了分析,为以后的工作奠定了基础。
推荐文章
一种基于K-均值分类稀疏表示的灰度图像颜色重建方法
颜色重建
稀疏表示
K-均值
残差补偿
基于改进的模糊C均值的BP分类器设计
模糊C均值
BP神经网络
聚类分析
基于K均值/SCHMM多级分类的手语识别
手语识别
特征
聚类
SCHMM
基于模糊KNN的刑侦图像场景分类
刑侦图像
纹理特征
场景分类
模糊KNN
隶属度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 浅层模糊K均值图像分类网络
来源期刊 计算机科学与探索 学科 工学
关键词 图像分类 深度学习 K均值聚类 浅层网络
年,卷(期) 2015,(8) 所属期刊栏目 人工智能与模式识别
研究方向 页码范围 1018-1024
页数 7页 分类号 TP391
字数 5441字 语种 中文
DOI 10.3778/j.issn.1673-9418.1409051
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 高新波 西安电子科技大学电子工程学院 176 3425 27.0 52.0
2 王颖 西安电子科技大学电子工程学院 14 80 5.0 8.0
3 李洁 西安电子科技大学电子工程学院 51 747 14.0 26.0
4 焦志成 西安电子科技大学电子工程学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (65)
共引文献  (439)
参考文献  (13)
节点文献
引证文献  (3)
同被引文献  (4)
二级引证文献  (1)
1969(2)
  • 参考文献(1)
  • 二级参考文献(1)
1971(2)
  • 参考文献(2)
  • 二级参考文献(0)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(3)
  • 参考文献(0)
  • 二级参考文献(3)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(3)
  • 参考文献(0)
  • 二级参考文献(3)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1987(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(3)
  • 参考文献(1)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(5)
  • 参考文献(0)
  • 二级参考文献(5)
1992(4)
  • 参考文献(0)
  • 二级参考文献(4)
1993(7)
  • 参考文献(0)
  • 二级参考文献(7)
1994(8)
  • 参考文献(0)
  • 二级参考文献(8)
1995(4)
  • 参考文献(0)
  • 二级参考文献(4)
1996(6)
  • 参考文献(0)
  • 二级参考文献(6)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(5)
  • 参考文献(1)
  • 二级参考文献(4)
1999(2)
  • 参考文献(2)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(3)
  • 参考文献(2)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
图像分类
深度学习
K均值聚类
浅层网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学与探索
月刊
1673-9418
11-5602/TP
大16开
北京市海淀区北四环中路211号北京619信箱26分箱
82-560
2007
chi
出版文献量(篇)
2215
总下载数(次)
4
总被引数(次)
10748
论文1v1指导